Sunday, September 22, 2019

COAL – the Organic Rock - Coal is made up of organic components; specifically, plant matter that has been buried in an anoxic, or non-oxygenated, environment and compressed over millions of years. Because it is organic, coal defies the normal standards of classification for rocks, minerals, and fossils. Coal differs from every other kind of rock in that it is made of organic carbon: the actual remains, not just mineralized fossils, of dead plants. The carbon in coal was preserved from oxidation and remains in a chemically reduced form, available for oxidation.

Coal
........................................................................................................................................................
Coal
the organic rock
Everything You Need to Know About Coal
by Andrew Alden 



Coal is an enormously valuable fossil fuel that has been used for hundreds of years in industry.
It is made up of organic components; specifically, plant matter that has been buried in an anoxic, or non-oxygenated, environment and compressed over millions of years. 
Fossil, Mineral or Rock?
Because it is organic, coal defies the normal standards of classification for rocks, minerals, and fossils: 
·           A fossil is any evidence of life that has been preserved in rock. The plant remains that make up coal have been "pressure cooked" for millions of years. Therefore, it is not accurate to say that they have been preserved. 
·          Minerals are inorganic, naturally-occurring solids. While coal is a naturally-occurring solid, it is composed of organic plant material.
·          Rocks are, of course, made up of minerals. 
Talk to a geologist, though, and they'll tell you that coal is an organic sedimentary rock.
Even though it doesn't technically meet the criteria, it looks like a rock, feels like a rock and is found between sheets of (sedimentary) rock. So, in this case, it is a rock. 
Geology isn't like chemistry or physics with their steadfast and consistent rules. It is an Earth science; and like the Earth, geology is full of "exceptions to the rule." 
State legislators struggle with this topic as well: Utah and West Virginia list coal as their official state rock while Kentucky named coal its state mineral in 1998. 
Coal: the Organic Rock
Coal differs from every other kind of rock in that it is made of organic carbon: the actual remains, not just mineralized fossils, of dead plants.
Today, the vast majority of dead plant matter is consumed by fire and decay, returning its carbon to the atmosphere as the gas carbon dioxide.
In other words, it is oxidized. The carbon in coal, however, was preserved from oxidation and remains in a chemically reduced form, available for oxidation.
Coal geologists study their subject the same way that other geologists study other rocks.
But instead of talking about the minerals that make up the rock (because there are none, just bits of organic matter), coal geologists refer to the components of coal as macerals.
There are three groups of macerals: inertinite, liptinite, and vitrinite.
To oversimplify a complex subject, inertinite is generally derived from plant tissues, liptinite from pollen and resins, and vitrinite from humus or broken-down plant matter.
Where Coal Formed
The old saying in geology is that the present is the key to the past.
Today, we can find plant matter being preserved in anoxic places: peat bogs like those of Ireland or wetlands like the Everglades of Florida.
And sure enough, fossil leaves and wood are found in some coal beds.
Therefore, geologists have long assumed that coal is a form of peat created by the heat and pressure of deep burial.
The geologic process of turning peat into coal is called "coalification."
Coal beds are much, much larger than peat bogs, some of them tens of meters in thickness, and they occur all over the world.
This says that the ancient world must have had enormous and long-lived anoxic wetlands when the coal was being made. 
Geologic History of Coal
While coal has been reported in rocks as old as Proterozoic (possibly 2 billion years) and as young as Pliocene (2 million years old), the great majority of the world's coal was laid down during the Carboniferous Period, a 60-million-year stretch (359-299 m.y.a.) when sea level was high and forests of tall ferns and cycads grew in gigantic tropical swamps.
The key to preserving the forests' dead matter was burying it.
We can tell what happened from the rocks that enclose the coal beds: there are limestones and shales on top, laid down in shallow seas, and sandstones beneath laid down by river deltas.
Obviously, the coal swamps were flooded by advances of the sea. This allowed shale and limestone to be deposited on top of them.
The fossils in the shale and limestone change from shallow-water organisms to deep-water species, then back to shallow forms.
Then sandstones appear as river deltas advance into the shallow seas and another coal bed is laid down on top. This cycle of rock types is called a cyclothem.
Hundreds of cyclothems occur in the rock sequence of the Carboniferous. Only one cause can do that - a long series of ice ages raising and lowering the sea level.
And sure enough, in the region that was at the south pole during that time, the rock record shows abundant evidence of glaciers.
That set of circumstances has never recurred, and the coals of the Carboniferous (and the following Permian Period) are the undisputed champions of their type.
It has been argued that about 300 million years ago, some fungus species evolved the ability to digest wood, and that was the end of the great age of coal, although younger coal beds do exist.
A genome study in Science gave that theory more support in 2012. If the wood was immune to rot before 300 million years ago, then perhaps anoxic conditions were not always necessary.
Grades of Coal
Coal comes in three main types or grades. First, the swampy peat is squeezed and heated to form a brown, soft coal called lignite.
In the process, the material releases hydrocarbons, which migrate away and eventually become petroleum.
With more heat and pressure lignite releases more hydrocarbons and becomes the higher-grade bituminous coal.
Bituminous coal is black, hard and usually dull to glossy in appearance.
Still greater heat and pressure yields anthracite, the highest grade of coal. In the process, the coal releases methane or natural gas.
Anthracite, a shiny, hard black stone, is nearly pure carbon and burns with great heat and little smoke. 
If coal is subjected to still more heat and pressure, it becomes a metamorphic rock as the macerals finally crystallize into a true mineral, graphite.
This slippery mineral still burns, but it is much more useful as a lubricant, an ingredient in pencils and other roles.
Still more valuable is the fate of deeply buried carbon, which at conditions found in the mantle is transformed into a new crystalline form: diamond.
However, coal probably oxidizes long before it can get into the mantle, so only Superman could perform that trick.
Andrew Alden
Professional geologist, writer, photographer, and geological tour guide
Thirty-seven years of experience writing about geological subjects
Six years as a research guide with U.S. Geological Survey (USGS)
Experience
Andrew Alden is a former writer for ThoughtCo who contributed hundreds of articles for more than 17 years. Andrew works as a geologist, writer, editor, and photographer. He has written on geological subjects since 1981 and participates actively in his field. For example, Andrew spent six years as a research guide with the U.S. Geological Survey, leading excursions on both land land and at sea. And since 1992, he has hosted the earthquakes conference for the online discussion platform, The Well, which began as a dialogue between the writers and readers of the Whole Earth Review. 
In addition, Andrew is a longtime member of the member of the Geological Society of America — an international society that serves members in academia, government, and industry; and the American Geophysical Union — a community of earth and space scientists that advances the power of science to ensure a sustainable future.
Andrew lives in Oakland, California; and though he writes about the whole planet and beyond, Andrew finds his own city full of interest too and blogs about its geology
Education
Andrew Alden holds a bachelor's (B.A.) degree in Earth Science from the University of New Hampshire, College of Engineering and Physical Sciences, in Durham, N.H.
Awards and Publications
Andrew Alden on Earthquakes (The Well Group, Inc., 2011)
Assessment of River — Floodplain Aquifer Interactions (Environmental and Engineering Geoscience, 1997)
Andrew Alden on Hosting (The Well Group, Inc., 1995)
ThoughtCo and Dotdash
ThoughtCo is a premier reference site focusing on expert-created education content. We are one of the top-10 information sites in the world as rated by comScore, a leading Internet measurement company. Every month, more than 13 million readers seek answers to their questions on ThoughtCo.
For more than 20 years, Dotdash brands have been helping people find answers, solve problems, and get inspired. We are one of the top-20 largest content publishers on the Internet according to comScore, and reach more than 30% of the U.S. population monthly. Our brands collectively have won more than 20 industry awards in the last year alone, and recently Dotdash was named Publisher of the Year by Digiday, a leading industry publication.
Coal

No comments:

Post a Comment